Performance Guide
A modern roof insulation system must do more than just protect building occupants from cold. It must create a comfortable and healthy environment in all possible combinations of external and internal conditions and control the effects of external heat, cold, noise and internal moisture generation.

NBT Flat roof system...
Keep the building warmer for longer in cold weather: Low thermal conductivity and high vapour permeability provide high thermal insulation with a lower risk of interstitial condensation than conventional constructions. Vapour barriers are unnecessary. Wood fibre boards over the rafters reduce the effect of thermal bridging and increase thermal performance. Energy use for heating is significantly reduced leading to lower CO₂ emissions and running costs.

Keep the building quieter: The high mass and the fibrous texture of NBT PAVATEX woodfibre boards give excellent acoustic performance to buildings.

Keep the building cooler in hot weather: In flat roof constructions, protection against summer overheating is important as (especially with dark coverings) solar gains can be enormous. The unique combination of high density, high specific heat capacity and low thermal conductivity gives NBT solutions the effect of thermal mass that would normally be associated with green roofs.

Keep the building dry and breathable: NBT PAVATEX woodfibre boards are very vapour permeable and hygroscopic. This allows them to disperse accumulating short term moisture and protect vulnerable elements of the building fabric, with no reduction in the performance of the boards themselves. The boards allow moisture from within the structure to dry out to both the inside and the outside. This provides a safeguard against high moisture content. This is vital for the long-term health of the building fabric, and is completely overlooked by most conventional insulation systems.
NBT FLAT ROOF

Checklist

The checklist below shows important factors that need to be considered when building a flat roof. Please note, that this is not a complete list, and the suitability of NBT products should be assessed by NBT in every case.

Location
Factors such as the amount of sunshine, temperature, surrounding buildings or wind affect a flat roof and need to be considered.

Finish
Material, colour, vapour resistance or shadow (e.g. through solar panels) are important factors that affect a flat roof construction.

Airtightness
Very good levels of airtightness are required for all flat roof constructions. A blower door test is strongly recommended.

Pitch
Minimum Pitch for all NBT flat roof constructions is 3°.

Ventilation
For vented flat roof constructions (Type B), sufficient ventilation is key to avoid failures. Not only the ventilation area, but also its continuity via openings at both ends is vital.

Other factors
There are other factors that need to be considered, such as using dry timber, covering the site during construction, good workmanship and much more.

Flat roof type
Check out different construction types from page 9-11. Each type has its own important factors that need to be considered. Depending on certain factors, not every construction is possible for every location.

For more information please visit www.natural-building.co.uk
Despite modern building materials, calculation tools and many years experience, flat roof constructions remain a critical construction and require special attention during both planning and construction phase. The graphic and text below show complex moisture and temperature movements that will affect a flat roof construction. They can be defined as moisture and heat factors, then further divided into internal and external factors.

Internal:
Internal **temperature** should remain steady during the whole year. NBT systems help to prevent the building from overheating in the summer and keep it warm in the winter. It is important to know that warm air can hold more moisture (absolute content) than cold air, which plays an important role in moisture movements within a flat roof.

The **moisture** impact from the inside is due to diffusion (amount of moisture that gets into the construction through the materials) and convection (moisture that gets into the construction through convection of air that penetrates the airtightness layer e.g. through leakages). Generally, diffusion happens from the inside to the outside during winter, and the other way around in summer (provided a low vapour resistance of the airtightness membrane allows drying out to the inside). High material moisture content is another (often forgotten) way for moisture to get into a construction. Wet initial conditions can lead to problems as the dry out potential in a flat roof is limited. Kiln dried timber and dry insulation (protected against rain during construction) are vital to avoid high moisture content.

External:
The driving factor in terms of outside **temperature** is the sun. The incidence of direct or diffused sunlight (short wave irradiation) on a flat roof surface is very important in helping to dry out the construction to the inside (provided no internal vapour barrier limits the drying out). Dark coloured coverings can absorb more of the sun’s energy than bright coverings, which reflect most of the short waves. Also, the type and thickness of the coverings (e.g. a green roof) has a big impact on the dry out of the construction.

Another factor that affects a flat roof is latent heat. This is the energy that is released or used when water changes its condition of aggregation (e.g. when water evaporates it cools down the surrounding area). Compared with the energy of the sun, this has a minor effect on the flat roof.

The **moisture** impact from outside should be zero as soon as the construction has its finished covering. Due to the limited dry out capability, measures to eliminate moisture ingress during the construction phase should be employed.
The sun (radiation)
The sun is the driving factor to dry out a flat roof construction. If the absorption of the sun’s heat is restricted due to the proximity of buildings or trees, solar panels, green roofs, parapets or similar, the dry out potential of the construction can be reduced considerably.

Precipitation
Rain should not cause any problems to a flat roof if it is built properly (3° pitch, drain, waterproof EPDM,...). However, the amount of rainfall is closely related to the amount of sunshine, whose importance is demonstrated in the graph below. For northerly locations, precipitation as snow can be a limiting factor in terms of snow loads and must be considered by the structural engineer.

Temperature
Temperature on the outside as well as on the inside plays a vital role in terms of condensation and the dry out potential of the construction. Obviously higher outside temperatures are favourable for drying out and avoiding interstitial condensation. Internally, a steady temperature is desirable, without overheating in the summer and keeping the building warm in winter. The internal temperature is closely linked to relative humidity levels.

Humidity
Internal: High moisture loads internally can be harmful to the construction. NBT woodfibre insulation can act as a buffer for moisture. This means that moisture can be temporarily stored in the woodfibre boards and later released when the relative humidity drops. However, a constant high humidity is not good for the construction and will lead to increased moisture content in the material, including the structural timber.

External: higher humidities will limit the dry out potential.

Wind
Wind does not greatly affect non-vented flat roofs. For vented flat roof construction, wind is normally beneficial to the ventilation and helps to dry out the construction as it dissipates wet air from between the covering and the breathable membrane.

Summary location:
All these different external conditions can affect a flat roof construction greatly. The graph below shows the identical construction located in different cities. It can be seen that the material moisture content is up to 4% higher for Edinburgh compared to London. This difference is significant, especially as flat roofs are often critical construction elements.

[Graph showing moisture content of woodfibre boards in different locations over time]

Location is a very important factor which can be decisive in making a flat roof construction work or fail.
NBT FLAT ROOF - Key Factors

Finish

The finish of a flat roof is crucial to its functionality. There are many different factors, some of which are described below:

Colour
Dark colours result in more absorption of sunlight. This is beneficial to the dry out of the construction and therefore beneficial to a flat roof construction. However, drying out to the inside has to be possible (i.e. no vapour barrier present).

Density
Dense insulation materials provide better protection against airborne sound and will also affect heat storage and the amount of moisture that can be held within the insulation (if hygroscopic). The load must be taken into account by a structural engineer.

Vapour permeability
Although the finish of a flat roof must be waterproof, vapour should still be able to diffuse through the layers. Extremely vapour-closed materials such as bituminous felts reduce the dry out potential of a construction considerably. Moisture can be trapped within such constructions and lead to moisture accumulation and ultimately structural damage.

Surface/material
Different surfaces react differently to the external conditions. A green roof, for example, will never get as hot as a lead covering.

EPDM (single ply)
EPDM (ethylene propylene diene monomer) membranes come in various colours, thicknesses, properties and application systems.
For non-vented NBT flat roof systems the EPDM needs to have the following properties:
- Vapour resistance 100-200MN/g (equals Sd-Values 20-40m)
- Dark colour to absorb maximum sunlight (short-wave radiation absorption ≥ 80%)
- Waterproof
- Minimum lifespan of 30 years

There are many products which fulfil these requirements. Please contact NBT for further advice.

These EPDM’s can be applied on a plywood, which is located directly onto the wood fibre insulation and fixed through to the structure.

Green roofs. Gravel, Solar panels, Metal cover, ...
All other finishing surfaces require a vented construction (check page 8 for advice on ventilation) as they reduce the dry out potential excessively.

Flat roof construction with different radiations

Effect of different radiations on flat roof construction (radiation 0.88 = dark covering; radiation 0.6 = partly shadowed dark colour or grey cover; radiation 0.3 = bright colour of covering or more shadow)
For more information please visit www.natural-building.co.uk

NBT FLAT ROOF - Key Factors

Airtightness

Airtightness is a crucial part of NBT flat roof systems. Good levels of airtightness help to prevent large amounts of moisture entering the construction.

Compared to the amount of moisture that can get into the construction through diffusion, large amounts of convection moisture can enter the construction through leakages in the airtightness layer. The damaging effect of penetrations (e.g. services, roof lights or similar) in the airtightness layer, if not sealed properly, is often underestimated.

In the UK, Building Regulations require an airtightness of 10m³/(h·m²) at a pressure difference of 50Pa (q₅₀ Value) for new build. For flat roof construction the target should be lower at a maximum of 3m³/(h·m²). (Passivhaus requires 0.6m³/(h·m²))

Frequently, the design airtightness value differs considerably from the actual as-built value. A blower door test would help to detect leakages and ensure the performance of the construction is as designed and required.

Pitch

Even though it is described as flat roof, a minimum pitch of 3° is required for every flat roof construction to avoid standing water.

With less than 3° it is very likely standing water will gather on top of the construction, which sooner or later, will lead to a failing flat roof construction.

3° is just enough to allow water flow into a gutter. Ensure the gutters are not blocked (e.g. though falling leaves) and water is always able to run off.

Introducing a pitch is relatively easy for some constructions, but more challenging for others. It is not possible to introduce uninsulated firrings within a flat roof construction which create air pockets within the construction (contact NBT for advice).

For vented constructions, introducing firrings at the level of the ventilation is not sufficient as the woodfibre boards need to have the same minimum pitch of 3°.

Type of airtightness membrane

For NBT flat roof constructions, an airtightness membrane with a low vapour resistance must be used to allow dry out to the inside.

A moderate vapour permeability (Sd-Value of 5m or less) membrane should be used on the warm side of the construction. Membranes with a variable vapour resistance such as Vario KM are recommended, as they allow less moisture to enter the construction during winter and more to dry out to the inside in the summer.

Using a vapour closed airtightness layer such as a vapour check or a thick plywood reduces the dry out potential considerably and is therefore not recommended.

Flat roof construction with standing water. This construction will eventually fail.
The advantage of a vented flat roof construction is that a variety of different coverings can be applied. The downside is that the construction is thicker due to the additional ventilation space. Ventilation is vital to make this type of flat roof construction work. If there is not sufficient air exchange, the construction is likely to fail.

Unlike vented facades or pitched roofs, flat roofs do not have sufficient height differential, which is a driving factor for air movement within a cavity. This means that the geometry of the ventilation and the openings are crucial for providing sufficient ventilation.

The minimum height for ventilation battens is 100mm.

If the length of the ventilation is greater than 10m, contact NBT for advice as achieving sufficient ventilation in this case is particularly challenging.

If a flat roof is adjoining a wall, or is built with parapets, it is very likely that there will not be sufficient airflow.

The ventilation openings must be continuous, with an effective opening of at least 100cm^2 per linear metre on both sides.

Protection against moisture during construction
A flat roof construction has a much lower dry out potential than other building elements. Therefore it is important that the materials are protected against moisture ingress during construction to avoid high initial moisture content.

Air pockets within the construction
When air pockets caused by firrings or missing insulation are present within a flat roof construction convection is likely within this space. Moisture will then be accumulated at the coldest spot within the construction and lead to problems.

Maintenance
A regular check of the condition of a flat roof is important to prevent problems. Drainage needs to be clear of leaves, and ventilation space and openings must remain unobstructed.

If a flat roof is vented properly, it is a good option for flat roof constructions. However, there are a couple of things that need to be considered.

A couple of additional factors that need considering are listed below:

- Protection against moisture during construction
- Air pockets within the construction
- Maintenance
NBT FLAT ROOF - Construction Types

Construction Type A

*Contact NBT for bespoke U-value and WUFI calculations.

This build-up is the most delicate of the three different NBT options because the structural element is within the insulated area, creating a potential risk of interstitial condensation. As a result, the only possible covering is a dark coloured EPDM with a moderate vapour permeability (no green roof, gravel, solar panels or similar). Check page 6 for more information about the finish covering.

Build-up
1. EPDM (Sd-Value 20-40m)
2. Plywood (max. 24mm)
3. NBT ISOROOF or PAVATHERM-PLUS
 (board preference subject to WUFI calculation)
4. Plywood 10mm (optional)
5. Rafters / NBT PAVAFLEX
6. Airtightness membrane (taped)
7. Service void 25mm
8. Plasterboard 12.5mm

Insulation:
- NBT Pavaflex insulation is a flexible woodfibre batt used to insulate between rafters.
- NBT ISOROOF is a rigid T&G woodfibre insulation board with a high density (230kg/m³) and compressive strength (150kPa @ 10% compression).
- NBT PAVATHERM-PLUS is a rigid T&G woodfibre insulation board with a high density (190kg/m³) and compressive strength (100kPa @ 10% compression).

Flat roof type A - Physical properties

<table>
<thead>
<tr>
<th></th>
<th>Unit</th>
<th>Rafter depth * Pavaflex insulation between rafters</th>
<th>over-rafter insulation ISOROOF / Pavatherm-Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>150</td>
<td>35 60 80 100 120</td>
</tr>
<tr>
<td>U-Value **</td>
<td>W/m²K</td>
<td></td>
<td>0.21 0.19 0.17 0.16 0.15**</td>
</tr>
<tr>
<td>Sound insulation (approximately)</td>
<td>dB</td>
<td></td>
<td>44 45 46 47 48</td>
</tr>
<tr>
<td>Decrement delay</td>
<td>hrs</td>
<td></td>
<td>6.5 7.9 9.3 10.7 12.1</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>219</td>
<td>35 60 80 100 120</td>
</tr>
<tr>
<td>U-Value</td>
<td>W/m²K</td>
<td></td>
<td>0.16 0.15 0.14 0.13 0.12</td>
</tr>
<tr>
<td>Sound insulation (approximately)</td>
<td>dB</td>
<td></td>
<td>47 48 49 50 51</td>
</tr>
<tr>
<td>Decrement delay</td>
<td>hrs</td>
<td></td>
<td>10.0 11.1 12.6 13.9 15.3</td>
</tr>
</tbody>
</table>

* ref. structural engineer

** Calculations done according to BS EN ISO 6946:1997 and BR 443. (allowances for wall plates etc, give a 9% bridging area for the timber).

*** Passivhaus solutions are marked in orange.
NBT FLAT ROOF - Construction Types

Construction Type B

*Contact NBT for bespoke U-value and WUFI calculations.

This build-up is the only one where a variety of finishing surfaces can be chosen. However, its performance is dependent on the ventilation and it will fail if this is not working properly (Check page 8 for information on ventilation). Use double threaded screws to fix the ventilation battens through the over-rafter insulation into the rafters to cope with the loads from the covering. Please consult a structural engineer for type and quantity of the fixings.

Physical Properties Flat roof type B

<table>
<thead>
<tr>
<th>Build-up</th>
<th>Finish covering (such as green roof or gravel)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>EPDM</td>
</tr>
<tr>
<td>3.</td>
<td>WBP Plywood</td>
</tr>
<tr>
<td>4.</td>
<td>Battens for ventilation (minimum 100mm)</td>
</tr>
<tr>
<td>5.</td>
<td>Breathable roofing membrane</td>
</tr>
<tr>
<td>6.</td>
<td>NBT ISOROOF / PAVATHERM-PLUS</td>
</tr>
<tr>
<td>7.</td>
<td>Rafters / NBT PAVAFLEX</td>
</tr>
<tr>
<td>8.</td>
<td>Airtightness membrane (taped)</td>
</tr>
<tr>
<td>9.</td>
<td>Service void 25mm</td>
</tr>
<tr>
<td>10.</td>
<td>Plasterboard 12.5mm</td>
</tr>
</tbody>
</table>

Insulation:
- NBT Pavaflex insulation is a flexible woodfibre batt used to insulate between rafters.
- NBT ISOROOF is a rigid woodfibre insulation board with a high density (230kg/m³) and compressive strength (150kPa @ 10% compression).
- NBT Pavatherm-Plus is a rigid woodfibre insulation board with a density of 180kg/m³ and a compressive strength of 100kPa @ 10% compression.

<table>
<thead>
<tr>
<th>Physical Properties Flat roof type B</th>
<th>Rafter depth * Pavaflex insulation between rafters</th>
<th>over rafter insulation ISOROOF / Pavatherm-Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td>mm</td>
<td>150</td>
</tr>
<tr>
<td>U-Value</td>
<td>W/m²K</td>
<td>35 60 80 100 120</td>
</tr>
<tr>
<td>Sound insulation (approximately)</td>
<td>dB</td>
<td>219</td>
</tr>
<tr>
<td>Decrement delay</td>
<td>hrs</td>
<td>6.5 7.9 9.3 10.7 12.1</td>
</tr>
<tr>
<td></td>
<td>mm</td>
<td>35 60 80 100 120</td>
</tr>
<tr>
<td>U-Value</td>
<td>W/m²K</td>
<td>140+80</td>
</tr>
<tr>
<td>Sound insulation (approximately)</td>
<td>dB</td>
<td>10.0 11.1 12.6 13.9 15.3</td>
</tr>
<tr>
<td>Decrement delay</td>
<td>hrs</td>
<td>10.0 11.1 12.6 13.9 15.3</td>
</tr>
</tbody>
</table>

* ref. structural engineer

** Calculations done according to BS EN ISO 6946:1997 and BR 443.(allowances for wall plates etc, give a 9% bridging area for the timber).
NBT FLAT ROOF - Construction Types

Construction Type C

*Contact NBT for bespoke U-value and WUFI calculations.

This flat roof construction is the best of the three as the structural element is on the warm side. It is normally easy to introduce the required pitch and there is no issue with ventilation. It requires, however, more space as all the insulation is above the rafters.

Ideally, use a tongue and grooved plywood over the top to limit movement between the boards. This helps to avoid stress on the membrane (e.g. when walking on the roof).

Build-up

1. EPDM (Sd-Value 20-40m)
2. Plywood (max. 24mm)
3. NBT PAVATHERM COMBI or NBT PAVATHERM (board preference subject to WUFI calculation)
4. OSB (18mm, taped for airtightness)
5. Rafters (create service void)
6. Plasterboard 12.5mm

Flat roof type C

Insulation:
- Pavatherm-Combi woodfibre insulation boards are T&G boards which come in thicknesses of 40, 60, 80, 100, 120,140mm and more. They have a high compressive strength (100kPa @ 10% compression) and a format which is easy to handle (58 x 178cm).

Physical Properties Flat roof type C

<table>
<thead>
<tr>
<th>Unit</th>
<th>Thickness of insulation Pavatherm-Combi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
</tr>
<tr>
<td>U-Value *</td>
<td>W/m²K</td>
</tr>
<tr>
<td>Sound insulation (approximately)</td>
<td>dB</td>
</tr>
<tr>
<td>Decrement delay</td>
<td>hrs</td>
</tr>
</tbody>
</table>

* Calculations done according to BS EN ISO 6946:1997 and BR 443
NBT FLAT ROOF

General Considerations

General:
The NBT System should only be installed by competent contractors. Provide the contractor with full and complete details for all critical areas of the system including those listed below - leave nothing to be agreed “on site”.

System Guarantee:
The system is guaranteed only if boards and accessories approved by NBT are used. Each flat roof must be modelled by NBT to check its suitability.

Weathertightness/Pitches:
Seal the boards for weathertightness against other elements at all joints, intersections, openings and penetrations and along all edges using NBT tapes and primer.
All boards have to be covered with a breathable membrane (taped at joints) and protected against moisture ingress during construction.

Airtightness:
Carefully detail the airtightness layer especially around openings, corners and junctions. Penetrations in the airtightness layer must be taped carefully to avoid moisture ingress though convection.
A blower door test is highly recommended to check the level of airtightness.

Boards:
Plan board layout to reduce wastage prior to commencing installation.
Boards must span at least 2 rafters. Board edges should not coincide with rafter positions, which should be at
\< 650 mm centres. Minimum bond overlap is 200 mm between courses.
Boards must not be wet or damaged and board edges
NBT FLAT ROOF

Components & Accessories

<table>
<thead>
<tr>
<th>Product</th>
<th>Use</th>
<th>Picture</th>
</tr>
</thead>
</table>
| NBT PAVATEX DB3.5 | • Airtightness membrane
• For internal use
• Sd-Value = 3.5m
• Roll size 1.5* 50m
• All joints to be taped | ![Image](image1.png) |
| NBT ADB BREATHABLE MEMBRANE | • Breathable membrane
• Use on top of flat roof type B
• Sd-Value = 0.03m
• Roll size 1.5* 50m
• All joints to be taped | ![Image](image2.png) |
| NBT PAVATEX PAVAPRIM | • Primer for NBT PAVATAPE
• Solvent based, for better adhesion of NBT PAVATAPE onto woodfibre boards.
• Coverage 15m/l; 1 litre tub | ![Image](image3.png) |
| NBT PAVATEX PAVABASE | • Primer for NBT PAVATAPE
• Water based, for better adhesion of NBT PAVATAPE onto woodfibre boards.
• Coverage 20m/l; 5 litre tub | ![Image](image4.png) |
| NBT PAVATEX PAVATAPE | • Butyl based tape with aluminium covering to seal edge joints (corners, etc.) and openings through NBT woodfibre boards.
• Surface on board requires priming;
• Length 15m; width 150mm | ![Image](image5.png) |
| NBT PAVATEX PAVAFIX | • Synthetic based tape
• To be used internally or externally
• Length 25m; width 60mm, 150mm and special 20/40 for sealing internal corners | ![Image](image6.png) |
| EJOT TKR | • Philips head countersunk screw with self-tapping tip;
• 4.8mm x 60-200mm (10mm increments);
• 4.8 x 200-300mm (20mm increments);
• Minimum embedment in rafter = 40mm | ![Image](image7.png) |
| HECO TOPIX-T THERM | • Double Threaded, T40 drill head countersunk screw with self-tapping tip;
• 8mm x 160-460mm (20mm increments);
• Minimum embedment in rafter = 40mm | ![Image](image8.png) |
| NBT PAVATEX JIGSAW BLADE | • Jigsaw blades for accurate cutting of the woodfibre boards (up to 120mm thickness)
• Length 150mm;
• 3 blades per pack | ![Image](image9.png) |

For more information please visit www.natural-building.co.uk
For your Notes & Sketches
NBT Product Overview: Insulation

ISOROOF sarking board
- PAVATEX wood fibre board for breathable roof & wall constructions
 - Size: 770 x 2500 mm
 - Cover area: 750 x 2480 mm
 - Thicknesses: 20* & 35 mm
 - k-value / l: 0.046 W/(mK)
 - Density: 230 kg/m³
 - Compr. strenght: 150 kPa (at 10 % compression)

PAVATEX DIFFUTHERM external wall insulation
- Wood fibre board for rendered external walls
 - Size: 580 x 1450 mm
 - Cover: 560 x 1430 mm
 - Thicknesses: 60, 80, 100 & 120 mm
 - k-value / l: 0.043 W/(mK)
 - Density: 190 kg/m³
 - Compr. strenght: 80 kPa (at 10 % compression)

PAVATHERM-PLUS sarking board
- Composite wood board for roof & wall insulation
 - Size: 580 x 1800 mm
 - Cover area: 560 x 1780 mm
 - Thicknesses: 60, 80, 100, 120 mm
 - k-value / l: 0.043 W/(mK)
 - Density: 180 kg/m³
 - Compr. strenght: 100 kPa (at 10 % compression)

PAVATHERM-COMBI multipurpose
- Composite wood board for roof & wall insulation
 - Size: 580 x 1800 mm
 - Cover area: 560 x 1780 mm
 - Thicknesses: 60, 80, 100, 120 mm
 - k-value / l: 0.041 W/(mK)
 - Density: 145 kg/m³
 - Compr. strenght: 100 kPa (at 10 % compression)

PAVADENTRO internal wall insulation
- Innovative wood fibre insulation board for refurbishment
 - Size: 600 x 1020 mm
 - Cover area: 590 x 1010 mm
 - Thicknesses: 40, 60, 80 & 100 mm
 - k-value / l: 0.043 W/(mK)
 - Density: 175 kg/m³
 - Compr. strenght: 70 kPa (at 10 % compression)

PAVADRY internal wall insulation
- Innovative wood fibre insulation board for refurbishment
 - Size: 600 x 1020 mm
 - Cover area: 590 x 1010 mm
 - Thicknesses: 52, 72 & 92 mm (Pavadentro/Hardboard)
 - k-value / l: 0.043 / 0.14 W/(mK)
 - Density: 175/740 kg/m³
 - Compr. strenght: 70 kPa (at 10 % compression)

PAVAFLEX
- Flexible wood fibre insulation batts for loft, walls, floors & ceilings
 - Size I: 375 x 1350 mm
 - Size II: 575 x 1350 mm
 - Thicknesses: 50, 80, 100 & 140 mm
 - k-value / l: 0.038 W/(mK)
 - Density: 55 kg/m³
 - Compr. strenght: -

PAVAFLOC - cellulose fibres
- Packaging: Bags of 12.5 kg (compressed)
 - Cover area: e.g. 30-60 kg/m³
 - k-value / l: 0.038 W/(mK)

For more information please visit www.natural-building.co.uk
Natural Building Technologies Ltd
The Hangar, Worminghall Road, Oakley, Buckinghamshire. HP18 9UL
T: 01844 338338 F: 01844 338525
info@natural-building.co.uk www.natural-building.co.uk

High performance systems

NBT PAVATEX woodfibre systems provide exceptional thermal & acoustic insulation, summer overheating protection and moisture control for the whole building in wall, roof and floor.

Low carbon, renewable products

NBT PAVATEX boards are made of waste wood and lock up the equivalent of ca. 11 tonnes of CO$_2$ per building. Raw material resources are entirely renewable, unlimited and FSC certified.

Healthy housing

NBT PAVATEX insulation boards are certified by natureplus as non-polluting and the NBT systems lead to breathable constructions; NBT PAVATEX insulation is specified exclusively by the Sentinel Haus Institute for healthy housing.

Tried & tested systems

NBT PAVATEX woodfibre insulation are widely used across Europe in all climates and conditions; physical values are 3rd party tested and guaranteed and production is according to BS EN.

Local service & support

Pavatex's partner in the UK is Natural Building Technologies (NBT) who are a Technical Sales Company with nationwide coverage based in Oakley, Bucks. NBT lead the UK sustainable materials & systems for high performance building shells.

Swiss quality & know-how for the UK

Produced and developed in Switzerland for more than 70 years by the world's most innovative woodfibre insulation manufacturer.